Haku

Neutron monitors and cosmogenic isotopes as cosmic ray energy-integration detectors:effective yield functions, effective energy, and its dependence on the local interstellar spectrum

QR-koodi

Neutron monitors and cosmogenic isotopes as cosmic ray energy-integration detectors:effective yield functions, effective energy, and its dependence on the local interstellar spectrum

Abstract

The method of assessment of galactic cosmic rays (GCR) variability over different timescales, using energy-integrating ground-based detectors such as a neutron monitor and cosmogenic isotopes ¹⁰Be and ¹⁴C stored in natural archives is revisited here. The effective yield functions for cosmogenic ¹⁴C (globally mixed in the atmosphere) and ¹⁰Be (realistically deposited in the polar region) are calculated and provided, in a tabulated form, in the supporting information. The effective energy of a detector is redefined so that the variability of the flux of GCR particles at this energy is equal to that of the detector’s count rate. The effective energy is found as 11–12 GeV/nucleon for the standard polar neutron monitor, and 6–7 GeV/nucleon and 5.5–6 GeV/nucleon for ¹⁴C and ¹⁰Be, respectively. New “calibration” relations between the force-field modulation potentials, based on different models of local interstellar spectra (LIS) are provided. While such relations are typically based on refitting the modeled cosmic ray spectra with a prescribed LIS model, the method introduced here straightforwardly accounts for the exact type of the detector used to assess the spectrum. The relations are given separately for ground-based neutron monitors and cosmogenic isotopes. This work allows for harmonization of different works related to variability of galactic cosmic ray flux in the vicinity of Earth, on long-term scale.

Tallennettuna: